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Abstract. Use cases are the notation of choice for functional requirements 
documentation, whereas task models are used as a starting point for user 
interface design. In this paper, we motivate the need for an integrated 
development methodology in order to narrow the conceptual gap between 
software engineering and user interface design. This methodology rests upon a 
common semantic framework for developing and handling use cases and task 
models. Based on the intrinsic characteristic of both models we define a 
common formal semantics and provide a formal definition of consistency 
between task models and use cases. The semantic mapping and the application 
of the proposed consistency definition are supported by an illustrative example. 
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1   Introduction 

Current methodologies and processes for functional requirements specification and UI 
design are poorly integrated. The respective artifacts are created independently of 
each other. A unique process allowing for UI design to follow as a logical progression 
from functional requirements specification does not exist. Moreover, it has been noted 
that most UI design methods are not well integrated with standard software 
engineering practices. In fact, UI design and the engineering of functional 
requirements are often carried out by different teams using different processes [1].  

There is a relatively large conceptual gap between software engineering and UI 
development. Both disciplines have and manipulate their own models and theories, 
and use different lifecycles.  The following issues result directly from this lack of 
integration:  
 
• Developing UI-related models and software engineering models independently 

neglects existing overlaps, which may lead to redundancies and increase the 
maintenance overhead.  



• Deriving the implementation from UI-related models and software engineering 
models towards the end of the lifecycle is problematic as both processes do not 
have the same reference specification and thus may result in inconsistent designs.  

 
Use cases are the artifacts of choice for the purpose of functional requirements 

documentation [2] while UI design typically starts with the identification of user 
tasks, and context requirements [3]. Our primary research goal is to define an 
integrated methodology for the development of use case and task model 
specifications, where the latter follows as a logical progression from the former.  
Figure 1 illustrates the main component of this initiative, which is the definition of a 
formal framework for handling use cases and task models at the requirements and 
design levels. The cornerstone for such a formal framework is a common semantic 
model for both notations. This semantic model will serve as a reference for tool 
support and will be the basis for the definition of a consistency relation between a use 
case specification and a task model specification. The latter is the focus of this paper. 
 

 
Fig. 1. Relating Use Cases and Task Models within a Formal Framework 

The structure of this paper is as follows. Section 2 reviews and compares key 
characteristics of use cases and task models. Section 3 presents a formal mapping 
from use cases and task models to (nondeterministic) state machines. Based on the 
intrinsic characteristics of use cases and task models, we provide a formal definition 
of consistency. Our definition is illustrated with an example as well as with a 
counterexample. Finally in Section 4, we draw the conclusion and provide an outlook 
to future research.  



2 Background 

In this section we remind the reader of the key characteristics of use cases and task 
models. For each notation we provide definitions, an illustrative example as well as a 
formal representation. Finally, both notations are compared and the main 
commonalities and differences are contrasted. 

2.1 Use Cases 

A use case captures the interaction between actors and the system under development. 
It is organized as a collection of related success and failure scenarios that are all 
bound to the same goal of the primary actor [4]. Use cases are typically employed as a 
specification technique for capturing functional requirements. They document the 
majority of software and system requirements and as such, serve as a contract (of the 
envisioned system behavior) between stakeholders [2]. In current practice, use cases 
are promoted as structured textual constructs written in prose language. While the use 
of narrative languages makes use case modeling an attractive tool to facilitate 
communication among stakeholders, prose language is well known to be prone to 
ambiguities and leaves little room for advanced tool support.  

As a concrete example, Figure 2 presents a sub-function level use case for a 
“Login” function. We will be using the same example throughout this paper, and for 
the sake of simplicity, have kept the complexity of the use case to a minimum. A use 
case starts with a header section containing various properties of the use case.  The 
core part of a use case is its main success scenario, which follows immediately after 
the header. It indicates the most common ways in which the primary actor can reach 
his/her goal by using the system. The main success scenario consists of a set of steps 
as well as (optional) control constructs such as choice points. We note that technically 
and counter-intuitively to its name, the main success scenario does not specify a 
single scenario but a set of scenarios. However, current practice in use case writing 
suggests the annotation of the main success scenario with such control constructs [2]. 
Within our approach we acknowledge this “custom” by allowing control structures to 
be included in the main success scenario.  

A use case is completed by specifying the use case extensions. These extensions 
constitute alternative scenarios which may or may not lead to the fulfillment of the 
use case goal. They represent exceptional and alternative behavior (relative to the 
main success scenario) and are indispensable to capturing full system behavior. Each 
extension starts with a condition (relative to one or more steps of the main success 
scenario), which makes the extension relevant and causes the main scenario to 
“branch” to the alternative scenario. The condition is followed by a sequence of 
action steps, which may lead to the fulfillment or the abandonment of the use case 
goal and/or further extensions. From a requirements point of view, exhaustive 
modeling of use case extensions is an effective requirements elicitation device. 

 
 
 
 



 

Use Case: Login 
 

Goal: Customer logs into the program 
Level: Sub-function 
Primary Actor: Customer 
 

Main scenario  
 

1. Customer indicates that he/she wishes to log-in to the system. (step:interaction)  
2. Customer performs the choice of the following: (stepChoice) 

2.1a Customer provides the user name. (step:interaction) 
2.1b Customer provides the password.  (step:interaction) 

OR 
2.2a Customer provides the password. (step:interaction) 
2.2b Customer provides the user name.  (step:interaction  

3. Customer confirms the provided data (step:interaction) 
4. System authenticates customer. (step:internal)) 
5. System informs the customer that the Login was successful. (step:interaction) 
6. System grants access to customer based on his/her access levels. (step:internal) 
7. The use case ends. (stepEnd) 

 

Extensions 
 

4a. The provided username or/and password is/are invalid:  
 

4a1. The system informs the customer that the provided username and/or 
password is/are invalid. (step:interaction) 

4a2. The system denies access to the customer. (step:internal) 
4a2. The use case ends unsuccessfully. (stepEnd)  

 

Fig. 2. Textual Presentation of the “Login” Use Case 

As mentioned before use cases are typically presented as narrative, informal 
constructs. A formal mapping from their informal presentation syntax to a semantic 
model is not possible. Hence, as a prerequisite, for the definition of formal semantics 
and consistency, we require use cases to have a formal structure, which is independent 
of any presentation. We have developed a XML Schema (depicted in Figure 3) which 
acts as a meta model for use cases. As such, it identifies the most important use case 
elements, defines associated mark-up and specifies existing containment relationships 
among elements. We use XSLT stylesheets [5] to automatically generate a “readable” 
use case representation (Figure 2) from the corresponding XML model.   

 



 
Fig. 3. Use Case Meta Model  

Most relevant for this paper is the definition of the stepGroup element as it 
captures the behavioral information of the use case. As depicted, the stepGroup 
element consists of a sequence of one of the following sub elements:  
• The step element denotes a use case step capturing the primary actor’s interactions 

or system activities. It contains a textual description and may recursively nest 
another stepGroup element. As implied by the annotations in Figure 2, we 
distinguish between interaction steps and internal steps. The former are performed 
or are observable by the primary actor and require a user interface, whereas the 
latter are unobservable by the primary actor.  

• The stepEnd element denotes an empty use case step which has neither a successor 
nor an extension.  

• The stepChoice element denotes the alternative composition of two stepGroup 
elements.  

• The stepGoto element denotes an arbitrary branching to another step.  
 
We note that the stepGroup element is part of the mainSuccessScenario as well as 

the extension element. The latter additionally contains a condition and a reference to 
one or many steps stating why and when the extension may occur.  

2.2  Task Models 

User task modeling is by now a well understood technique supporting user-centered 
UI design [6]. In most UI development approaches, the task set is the primary input to 
the UI design stage. Task models describe the tasks that users perform using the 
application, as well as how the tasks are related to each other. Like use cases, task 
models describe the user’s interaction with the system. The primary purpose of task 
models is to systematically capture the way users achieve a goal when interacting 



with the system [7]. Different presentations of task models exist, ranging from 
narrative task descriptions, work flow diagrams, to formal hierarchical task 
descriptions. 

 

 
Fig. 4. “Login” Task Model 

Figure 4 shows a ConcurTaskTreesEnvironment (CTTE) [8] visualization of the 
“Login” task model. CTTE is a tool for graphical modeling and analyzing of 
ConcurTaskTrees (CTT) models [9]. The figure illustrates the hierarchical break 
down and the temporal relationships between tasks involved in the “Login” 
functionality (depicted in the use case of Section 2.1). More precisely, the task model 
specifies how the user makes use of the system to achieve his/her goal but also 
indicates how the system supports the user tasks. An indication of task types is given 
by the used symbol to represent tasks. Task models distinguish between externally 
visible system tasks and interaction tasks. Internal system tasks (as they are captured 
in use cases) are omitted in task models.  

Formally a task model is organized as a directed graph. Tasks are hierarchically 
decomposed into sub-tasks until an atomic level has been reached. Atomic tasks are 
also called actions, since they are the tasks that are actually carried out by the user or 
the system. The execution order of tasks is determined by temporal operators that are 
defined between peer tasks. In CTT various temporal operators exist; examples 
include: enabling (>>), choice ([]), iteration (*), and disabling ([>]. A complete list of 
the CTT operators together with a definition of their interpretation can be found in 
[9].   

2.3  Use Cases vs. Task Models 

In the previous two sections, the main characteristics of use cases and task models 
were discussed. In this section, we compare both specifications and outline 
noteworthy differences and commonalities. In Section 3 the results of this comparison 
will be used as guides for the definition of a proper consistency relation that fits the 
particularities of both specifications.  



Both use cases and task models belong to the family of scenario-based notations, 
and as such capture sets of usage scenarios of the system. In theory, both notations 
can be used to describe the same information. In practice however, use cases are 
mainly employed to document functional requirements whereas task models are used 
to describe UI requirements/design details. Based on this assumption we identify 
three main differences which are pertinent to their purpose of application:  
1. Use cases capture requirements at a higher level of abstraction whereas task 

models are more detailed. Hence, the atomic actions of the task model are often 
lower level UI details that are irrelevant (actually contraindicated [2]) in the 
context of a use case. We note that due to its simplicity, within our example, this 
difference in the level of abstraction is not explicitly visible. 

2. Task models concentrate on aspects that are relevant for UI design and as such, 
their usage scenarios are strictly depicted as input-output relations between the user 
and the system. Internal system interactions (i.e. involvement of secondary actors 
or internal computations) as specified in use cases are not captured.  

3.  If given the choice, a task model may only implement a subset of the scenarios 
specified in the use case. Task models are geared to a particular user interface and 
as such must obey to its limitations. E.g. a voice user interface will most likely 
support less functionality than a fully-fledged graphical user interface. In the next 
section we will address the question of which use case scenarios the task model 
may specify and which scenarios the task model must specify.  

3 Formal Definition of Consistency 

In this section we first review related work and mathematical preliminaries. Next we 
define the mapping from use cases and task models to the proposed semantic domain 
of finite state machines. Finally we provide a formal notion of consistency between 
use cases and task models.  

3.1 Related Work 

Consistency verification between two specifications has been investigated for decades 
and definitions have been proposed for various models [10-14]. But to our knowledge 
a formal notion of consistency has never been defined for use cases and task model 
specification.   

Brinksma points out that the central question to be addressed is “what is the class 
of valid implementations for a given specification?” [15] To this effect various pre-
orders for labeled transition systems have been defined. Among others the most 
popular ones are trace inclusion [16], reduction [15], and extension [12, 15, 17]. The 
former merely requires that every trace of the implementation is also a valid trace 
according to the specification. The reduction preorder defines an implementation as a 
proper reduction of a specification if it results from the latter by resolving choices that 
were left open in the specification [15]. In this case, the implementation may have 
less traces. In the case of the extension preorder two specifications are compared for 
consistency by taking into account that one specification may contain behavioral 



information which is not present in the other specification. In the subsequent section 
we adopt (with a few modifications) the extension preorder as the consistency relation 
between uses cases and task models. A prerequisite for a formal comparison (in terms 
of consistency) of use cases and task models is a common semantics.   

In [18] Sinnig et al. propose a common formal semantics for use cases and task 
models based on sets of partial order sets. Structural operational semantics for CTT 
task models are defined in [19]. In particular Paternò defines a set of inference rules 
to map CTT terms into labeled transition systems. In [20] Xu et al. suggest process 
algebraic semantics for use case models, with the overall goal of formalizing use case 
refactoring.  

In [21, 22, 23] use case graphs have been proposed to formally represent the 
control flow within use cases. For example Koesters et al. define a use case graph as a 
single rooted directed graph, where the nodes represent use case steps and the edges 
represent the step ordering. Leaf nodes indicate the termination of the use case [21].  

In our approach we define common semantics for use cases and task model based 
on finite state machines. In the next section we lay the path for the subsequent 
sections by providing the reader with the necessary mathematical preliminaries.  

3.2 Mathematical Preliminaries 

We start by reiterating the definition of (non-deterministic) finite state machines 
(FSM) which is followed by the definitions of auxiliary functions needed by our 
consistency definition.   
 
Definition 1: A (nondeterministic) finite state machine is defined as the following 
tuple:  M = (Q, Σ, δ, q0, F), where 

• Q is a finite set of states. 
• Σ is a finite set of symbols (the input alphabet), where each symbol represents 

an event.  
• q0 is the initial state with q0 ∈ Q 
• F is the set of final (accepting) states with F ⊆ Q 
• δ: Q x (Σ ∪ {λ}) → 2Q is the transition function1, which returns for a given state 

and a given input symbol the set of (possible) states that can be reached.  
 

In what follows we define a set of auxiliary functions which will be used later on for 
the definition of consistency between two FSMs.  
 
Definition 2: The extended transition function δ*: Q x Σ* → 2Q is defined in a 
standard way as:  

δ*(qi, w) = Qj  
 

                                                           
1 λ represents the empty string. Σ0 = {λ} 
 



where Qj is the set of possible states the Non-deterministic FSM may be in, having 
started in state qi and after the sequence of inputs w. A formal recursive definition of 
the extended transition function can be found in [24].  

 
Definition 3: The function accept: Q → 2Σ denotes the set of possible symbols which 
may be accepted in a given state.  
  

accept (q) = {a | δ*(q, a)} 
 
Note that ‘a’ ambiguously denotes either a symbol or the corresponding string of one 
element.  
 
Definition 4: The function failure: Q → 2Σ denotes the set of possible symbols which 
may not be accepted (refused) in a given state. failure(p) is defined as the complement 
of accept (p).  
  

failure(p) = Σ  \ accept (p)  
 
Definition 5: The language L accepted by a FSM M = (Q, Σ, δ, q0, F) is the set of all 
strings of event symbols for which the extended transition function yields at least one 
final state (after having started in the initial state q0). Each element of L represents 
one possible scenario of the FSM.  
 
L (M) = {w | δ*(q0, w) ∩ F ≠ ∅}  
 

Definition 6: The set of all traces generated by the NFSM M = (Q, Σ, δ, q0, F) is the 
set of all strings or sequences of events accepted by the extended transition function 
in the initial state.  
 

Traces (M) = {w | δ*(q0, w)} 

3.3 Mapping Use Cases to Finite State Machines 

In this section we define a mapping from use cases to the domain of finite state 
machines. It is assumed that the use case specification complies with the structure 
outlined in Section 2.1.  

The building blocks of a use case are the various use case steps. According to the 
control information entailed in the use case, the various steps are gradually composed 
into more complex steps until the composition eventually results in the entire use 
case. We distinguish between sequential composition and choice composition. The 
former is denoted by the relative ordering of steps within the use case specification or 
the stepGoto construct, whereas the latter is denoted by the stepChoice element.  

A use case step may have several outcomes (depending on the number of 
associated extensions). This has an implication on the composition of use case steps. 
In particular the sequential composition of two use case steps is to be defined relative 
to a given outcome of the preceding step. For example the steps of the main success 



scenario are sequentially composed relative to their successful (and most common) 
outcome. In contrast to this, the steps entailed in use case extensions are sequentially 
composed relative to an alternative outcome of the corresponding “extended” steps.  

Following this paradigm, we propose representing each use case step as a finite 
state machine.  Figure 5 depicts a blueprint of such a state machine representing an 
atomic use case step. The FSM only consists of an initial state and multiple final 
states. The transitions from the initial state to the final states are triggered by events. 
Each event represents a different outcome of the step. In what follows we illustrate 
how the sequential composition and choice composition of use case steps are 
semantically mapped into the sequential composition and deterministic choice 
composition of FSMs.  

 

 
Fig. 5. FSM Blueprint for Atomic Use Case Steps 

Figure 6 schematically depicts the sequential composition of two FSMs M1 and M2 
relative to state qn. The resulting FSM is composed by adding a transition from qn 
(which is a final state in M1) and the initial state (s0) of M2. As a result of the 
composition, both qn and s0 lose their status as final or initial states, respectively. The 
choice composition of use case steps is semantically mapped into the deterministic 
choice composition of the corresponding FSMs. As depicted on the left hand side of 
Table 1 (in Section 3.4) the main idea is to merge the initial states of the involved 
FSMs into one common initial state of the resulting FSM.  

 
 

 
Fig. 6. Sequential Composition of Two FSMs 

Figure 7 depicts the FSM representing the “Login” use case from Section 2.1. It 
can be easily seen how the FSM has been constructed from various FSMs 
representing the use case steps. Identical to the textual use case specification, the FSM 



specifies the entry of the login coordinates (denoted by the events e21 and e22) in any 
order. Due to the associated extension, step 4 is specified as having different 
outcomes. One outcome (denoted by event e4) will lead to a successful end of the use 
case whereas the other outcome (denoted by event e4a) will lead to login failure.  

  

  

Fig. 7. FSM Representation of the “Login” Use Case 

3.4 Mapping CTT Task Models to Finite State Machines 

 
After we have demonstrated how use cases are mapped to FSM specifications, we 
now demonstrate the mapping from CTT task models to the same semantic domain. 
The building blocks of task models are the action tasks (i.e. tasks that are not further 
decomposed into subtasks). In CTT, action tasks are composed to complex tasks 
using a variety of temporal operators. In what follows we will demonstrate how 
actions tasks are mapped into FSMs and how CTT temporal operators are mapped 
into compositions of FSMs.  

In contrast to use case steps, tasks do not have an alternative outcome and the 
execution of a task has only one result. Figure 8 depicts the FSM denoting an action 
task. It consists of only one initial and one final state. The transition between the two 
states is triggered by an event denoting the completion of task execution.  

 

 
Fig. 8. FSM Representing an Action Task 

In what follows we demonstrate how CTT temporal operators (using the example 
of enabling (>>) and choice ([])) are semantically mapped into compositions of 
FSMs. The sequential execution of two tasks (denoted by the enabling operator) is 
semantically mapped into the sequential composition of the corresponding state 
machines. As each FSM representing a task has only one final state, the sequential 
composition of two FSMs M1 and M2 is performed by simply defining a new lambda 
transition from the final state of M1 to the initial state of M2.  



The mapping of the CTT choice operator is less trivial. At this point it is important 
to recall our assumption (see Section 2.3) that task models specify system behavior as 
an input-output relation, where internal system events are omitted. Moreover the 
execution of a task can result only in one state. The specification of alternative 
outcomes is not possible. Both observations have implications on the semantic 
mapping of the choice operator. Depending on the task types of the operands we 
propose distinguishing between deterministic choices and non-deterministic choices. 
If the enabled tasks of both operands are application tasks (e.g. “Display Success 
Message”, “Display Failure Message”, etc.) then (a) the non-deterministic choice is 
used to compose the corresponding FSMs, otherwise (b) the deterministic choice 
composition is employed.  

The former (a) is justified by the fact that each application works in a deterministic 
manner. Hence, the reason why the system performs either one task or the other is 
because the internal states of the system are not the same. Depending on its internal 
state, the system either performs the task specified by the first operand or the task 
specified by the second operand. However, task models do not capture internal system 
operations. As a result, from the task model specification, we do not know why the 
system is in one state or the other and the choice between the states becomes non-
deterministic.  

As for the latter case (b), the choice (e.g. between two interaction tasks) is 
interpreted as follows. In a given state of the system, the user has the exclusive choice 
between carrying one or the other task. Clearly the system may only be in one 
possible state when the choice is made. Hence, the deterministic choice composition 
is applicable.  

Table 1 schematically depicts the difference between deterministic choice 
composition and non-deterministic choice composition of two FSMs. In contrast to 
deterministic choice composition (discussed in the previous section) non-
deterministic choice composition does not merge the initial states of the involved 
FSMs, but introduces a new initial state.  

 

Table 1: Choice Compositions of FSMs 

Deterministic Choice Composition  Non-deterministic Choice Composition 

  



 
Figure 9 portrays the corresponding FSM for the “Login” task model. We note that 

the non-deterministic choice composition has been employed to denote the CTT 
choice between the system tasks “Display Success Message” and “Display Failure 
Message”. After the execution of the “Submit” task the system non-deterministically 
results in two different states. Depending on the state either the Failure or the Success 
Message is displayed.  

Fig. 9. FSM Representation of the “Login” Task Model 

For the sake of completeness we now briefly sketch out how the remaining CTT 
operators (besides enabling and choice) can be mapped into FSM compositions: In 
CTT it is possible to declare tasks as iterative or optional. Iterative behavior can be 
implemented by adding a transition from the final state to the initial state of the FSM 
representing the task, whereas optional behavior may be implemented by adding a 
lambda transition from the initial state to the final state. The remaining CTT operators 
are more or less a short hand notation for more complex operations. As such they can 
be rewritten using the standard operators. For example the order independency (t1 |-| 
t2) operator can be rewritten as the choice of either executing t1 followed by t2 or 
executing t2 followed by t1. Another example is the concurrency (t1 ||| t2) operator, 
which can be rewritten as the choice between all possible interleavings of action tasks 
entailed in t1 and t2. Similar rewritings can be established for the operators disabling 
and suspend/resume. Further details can be found in [18].  

3.5 A Formal Definition of Consistency 

In Section 2.3 we made the assumption and viewed task models as UI specific 
implementations of a use case specification. In this section we will tackle the question 
of what is the class of valid task model implementations for a given use case 
specification. To this effect we propose the following two consistency principles:  
1. Every scenario in the task model is also a valid scenario in the use case 

specification. That is, what the implementation (task model) does is allowed by the 
specification (use case). 

2. Task models do not capture internal operations, which are however specified in the 
corresponding use case specification. In order to compensate for this allowed 
degree of under-specification we require the task model to cater for all possibilities 
that happen non-deterministically from the user’s perspective.  



 
For example as specified by the “Login” use case the system notifies the primary 

actor of the success or failure of his login request based on the outcome of the 
internal validation step. According to the second consistency principle we require 
every task model that implements the “Login” use case specification to specify the 
choice between a task representing the success notification and a task representing the 
failure notification.  

We note that the first consistency principle can be seen as a safety requirement, as 
it enforces that nothing bad can happen (the task model must not specify an invalid 
scenario with respect to the use case specification). The second consistency principle 
can be seen as a liveness requirement as it ensures that the task model specification 
does not “deadlock” due to an unforeseen system response.  

In order to formalize the two consistency principles we adopt Brinksma’s 
extension relation [15], which tackles a related conformance problem for labeled 
transition systems. Informally, a use case specification and a task model specification 
are consistent, if and only if the later is an extension of the former. Our definition of 
consistency between task models and use cases is as follows:  
 
Definition 7: Consistency. Let M1 = (Q1, Σ, δ1, q01, F1) be the FSM representing the 
use case U and M2 = (Q2, Σ, δ2, q02, F2) be the FSM representing the task model T. 
Then T is consistent to the use case U iff the following two properties hold.  

(1) Language inclusion (safety property)  
L(M2) ⊆ L(M1) 

(2) Sufficient coverage: (liveness property) 
∀t ∈ T with T = {Traces(M2) \ L(M2)} 

a. Let QM1={p1, p2, …, pn} be δ*(q01,t). That is, the pi’s are all and 
only the states that can be reached from the initial state of M1 after 
having accepted t. 

b. Let QM2={q1, q2, …, qm} be δ*(q02,t). That is, the qj’s are all and 
only the states that can be reached from the initial state of M2 after 
having accepted t. 

c. We require that: ∀p ∈QM1 ∃q ∈QM2. failure (p) ⊆ failure (q). 
 

The liveness property states that the task model FSM must refuse to accept an 
event in a situation where the use case FSM may also refuse. If we translate this 
condition back to the domain of use cases and task models, we demand the task model 
to provide a task for every situation where the use case must execute a corresponding 
step. The main difference to Brinksma’s original definition is that our definition is 
defined over finite state machines instead of labeled transition systems. As a 
consequence, we require that the language accepted by the task model FSM is 
included in the language accepted by the use case FSM (safety property). Task 
models that only implement partial scenarios of the use case specification are deemed 
inconsistent.  

One precondition for the application of the definition is that both state machines 
operate over the same alphabet. The mappings described in the previous sections do 
not guarantee this property. Hence, in order to make the FSMs comparable, a set of 
preliminary steps have to be performed and are described in the following:  



1. Abstraction from internal events: Task models do not implement internal system 
events. Hence, we require the alphabet of the use case FSM to be free of symbols 
denoting internal events. This can be achieved by substituting every symbol 
denoting an internal event by lambda (λ)2.  

2. Adaptation of abstraction level: Task model specifications are (typically) at a 
lower level of abstraction than their use case counter parts. As such a use case step 
may be refined by several tasks in the task model. Events representing the 
execution of these refining tasks will hence not be present in the use case FSM. We 
therefore require that for every event ‘e’ of the task model FSM there exists a 
bijection that relates ‘e’ to one corresponding event in the use case FSM. This can 
be achieved by replacing intermediate lower level events in the task model FSM 
with lambda events. Events denoting the completion of a refining task group are 
kept.   

3. Symbol mapping: Finally, the alphabets of the two FSMs are unified by renaming 
the events of the task model FSM to their corresponding counterparts in the use 
case FSM.  

 
In what follows we will apply our consistency definition to verify that the “Login” 

task model is a valid implementation of the “Login” use case. Table 2 depicts the 
FSMs for the “Login” use case (MU) and the “Login” task model (MT), after the 
unification of their input alphabets. We start with the verification of the safety 
property (language inclusion). With 

L(MU)={<e1,e21,e22,e3,e5>,<e1,e22,e21,e3,e5>,<e1,e21,e22,e3,e4a1>,<e1,e22,e21,e3,e4a1>} 
L(MT)={<e1, e21, e22, e3, e5>,<e1, e21, e22, e3, e4a1>}  
we can easily see the L(MT) ⊆ L(MU). Hence the first property is fulfilled.  

Table 2: Use Case FSM and Task Model FSM After the Unification of Their Alphabets 

Unified Use Case FSM  (MU) Unified Task Model FSM (MT) 

 

 
We continue with the verification of the second property (liveness). The set T of all 

partial runs of MT is as follows:  
T = {<e1>,<e1,e21>,<e1,e21,e22>, <e1,e21,e22,e3>}  

We verify for each trace t in T that the liveness property holds. Starting with t= <e1> 
we obtain QMU={q2}; QMT={u2} as the set of reachable states in MU and MT after 
having accepted t. Next we verify that for every state in QMU there exists a state in 
QMT with an encompassing failure set. Since QMU and QMT only contain one element 
we require that failure (q2) ⊆ failure (u2). With failure(q2) = {e1, e3, e5, a4a1} and 
failure(u2) = {e1, e22, e3, e5, a4a1} this property is clearly fulfilled. In a similar fashion 

                                                           
2 Lambda denotes the empty string and as such is not part of the language accepted by an FSM. 



we prove that the liveness property holds for the traces: <e1,e21>,<e1,e21,e22>. More 
interesting is the case where t = <e1,e21,e22,e3>. We obtain QMU={q6, q7, q10}; 
QMT={u5, u6, u8} as the set of reachable states in MU and MT after having accepted t. 
Next we have to find for each state in QMU a state in QMT with an “encompassing” 
failure set. For q6 (failure(q6)={e1, e21, e22, e3}) we identify u5 (failure(u5)={e1, e21, e22, 
e3}). For q7 (failure(q7)={e1, e21, e22, e3, e4a1}) we identify u6  (failure(u6)={e1, e21, e22, 
e3, e4a1}) and for q10 (failure (q10)= {e1, e21, e22, e3, e5}) we identify u8 (failure (u8) = 
{e1, e21, e22, e3, e5}). For each identified pair of pi and qi it can be easily seen that 
failure (pj) ⊆ failure (qi), hence we conclude that the “Login” task model represented 
by MT is consistent to the “Login” use case represented by MU q.e.d. 

 

 
 

Fig. 10. FSM Representation of an Inconsistent “Login” Task Model 
 
We conclude this chapter with a counter example, by presenting a “Login” task 

model which is not a valid implementation of the “Login” use case. The FSM (MT2) 
portrayed by Figure 10 represents a task model which does not contain the choice 
between “Display Failure Message” and “Display Success Message”. Instead, after 
the “Submit” task (e3), “Success Message” (e5) is always displayed. It can be easily 
seen that the safety property holds with L(MT2) ⊆ L(MU). The verification of the 
liveness property however will lead to a contradiction. For this purpose, let us 
consider the following trace of MT2: t = <e1,e21,e22,e3>. We obtain QMU={q6, q7, q10} 
and QMT2={u5} as the set of all reachable states in MU and MT after having accepted t. 
In this case however, for q10 we cannot find a corresponding state in QMT2 (which in 
this case consists of a single element only) such that the failure set inclusion holds. 
We obtain failure(q10)={e1, e21, e22, e3, e5} and failure(u5)={e1, e21, e22, e3, e4a1}. 
Clearly failure(q10) is not a subset of failure(u5). Hence the task model is not 
consistent to the “Login” use case.  

4 Conclusion 

In this paper we proposed a formal definition of consistency between use cases and 
task models based on a common formal semantics. The main motivation for our 
research is the need for an integrated development methodology where task models 
are developed as logical progressions from use case specifications. This methodology 
rests upon a common semantic framework where we can formally validate whether a 
task model is consistent with a given use case specification. With respect to the 
definition of the semantic framework, we reviewed and contrasted key characteristics 
of use cases and task models. As a result we established that task model specifications 
are at a lower level of abstraction than their use case counterparts. We also noted that 
task models omit the specification of internal system behavior, which is present in use 
cases. 



These observations have been used as guides for both the mapping to finite state 
machines and for the formal definition of consistency. The mapping is defined in a 
compositional manner over the structure of use cases and task models. As for the 
definition of consistency, we used an adaptation of Brinksma’s extension pre-order. 
We found the extension relation appropriate because it acknowledges the fact that 
under certain conditions two specifications remain consistent, even if one entails 
additional behavioral information which is omitted in the second. Both the mapping 
and the application of the proposed definition of consistency have been supported by 
an illustrative example.  

As future work, we will be tackling the question of how relationships defined 
among use cases (i.e. extends and includes) can be semantically mapped into finite 
state machines. This will allow us to apply the definition of consistency in a broader 
context, which is not restricted to a single use case. Another issue deals with the 
definition of consistency among two use case specifications and in this vein also 
among two task model specifications.  For example, if a user-goal level use case is 
further refined by a set of sub-function use cases it is important to verify that the sub-
function use cases do not contradict the specification of the user goal use case. Finally 
we note that for the simple “Login” example consistency can be verified manually. 
However, as the specifications become more complex, efficient consistency 
verification requires supporting tools. We are currently investigating how our 
approach can be translated into the specification languages of existing model checkers 
and theorem provers.  
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