
Consistency between Task Models and Use Cases

Daniel Sinnig1, Patrice Chalin1 and Ferhat Khendek2

1 Department of Software Engineering and Computer Science,

Concordia University, Montreal, Quebec, Canada
{d_sinnig, chalin}@encs.concordia.ca

1 Department of Electrical and Computer Engineering,

Concordia University, Montreal, Quebec, Canada
khendek@ece.concordia.ca

Abstract. Use cases are the notation of choice for functional requirements
documentation, whereas task models are used as a starting point for user
interface design. In this paper, we motivate the need for an integrated
development methodology in order to narrow the conceptual gap between
software engineering and user interface design. This methodology rests upon a
common semantic framework for developing and handling use cases and task
models. Based on the intrinsic characteristic of both models we define a
common formal semantics and provide a formal definition of consistency
between task models and use cases. The semantic mapping and the application
of the proposed consistency definition are supported by an illustrative example.

Keywords: use cases, task models, finite state machines, formal semantics,
consistency

1 Introduction

Current methodologies and processes for functional requirements specification and UI
design are poorly integrated. The respective artifacts are created independently of
each other. A unique process allowing for UI design to follow as a logical progression
from functional requirements specification does not exist. Moreover, it has been noted
that most UI design methods are not well integrated with standard software
engineering practices. In fact, UI design and the engineering of functional
requirements are often carried out by different teams using different processes [1].

There is a relatively large conceptual gap between software engineering and UI
development. Both disciplines have and manipulate their own models and theories,
and use different lifecycles. The following issues result directly from this lack of
integration:

• Developing UI-related models and software engineering models independently

neglects existing overlaps, which may lead to redundancies and increase the
maintenance overhead.

• Deriving the implementation from UI-related models and software engineering
models towards the end of the lifecycle is problematic as both processes do not
have the same reference specification and thus may result in inconsistent designs.

Use cases are the artifacts of choice for the purpose of functional requirements

documentation [2] while UI design typically starts with the identification of user
tasks, and context requirements [3]. Our primary research goal is to define an
integrated methodology for the development of use case and task model
specifications, where the latter follows as a logical progression from the former.
Figure 1 illustrates the main component of this initiative, which is the definition of a
formal framework for handling use cases and task models at the requirements and
design levels. The cornerstone for such a formal framework is a common semantic
model for both notations. This semantic model will serve as a reference for tool
support and will be the basis for the definition of a consistency relation between a use
case specification and a task model specification. The latter is the focus of this paper.

Fig. 1. Relating Use Cases and Task Models within a Formal Framework

The structure of this paper is as follows. Section 2 reviews and compares key
characteristics of use cases and task models. Section 3 presents a formal mapping
from use cases and task models to (nondeterministic) state machines. Based on the
intrinsic characteristics of use cases and task models, we provide a formal definition
of consistency. Our definition is illustrated with an example as well as with a
counterexample. Finally in Section 4, we draw the conclusion and provide an outlook
to future research.

2 Background

In this section we remind the reader of the key characteristics of use cases and task
models. For each notation we provide definitions, an illustrative example as well as a
formal representation. Finally, both notations are compared and the main
commonalities and differences are contrasted.

2.1 Use Cases

A use case captures the interaction between actors and the system under development.
It is organized as a collection of related success and failure scenarios that are all
bound to the same goal of the primary actor [4]. Use cases are typically employed as a
specification technique for capturing functional requirements. They document the
majority of software and system requirements and as such, serve as a contract (of the
envisioned system behavior) between stakeholders [2]. In current practice, use cases
are promoted as structured textual constructs written in prose language. While the use
of narrative languages makes use case modeling an attractive tool to facilitate
communication among stakeholders, prose language is well known to be prone to
ambiguities and leaves little room for advanced tool support.

As a concrete example, Figure 2 presents a sub-function level use case for a
“Login” function. We will be using the same example throughout this paper, and for
the sake of simplicity, have kept the complexity of the use case to a minimum. A use
case starts with a header section containing various properties of the use case. The
core part of a use case is its main success scenario, which follows immediately after
the header. It indicates the most common ways in which the primary actor can reach
his/her goal by using the system. The main success scenario consists of a set of steps
as well as (optional) control constructs such as choice points. We note that technically
and counter-intuitively to its name, the main success scenario does not specify a
single scenario but a set of scenarios. However, current practice in use case writing
suggests the annotation of the main success scenario with such control constructs [2].
Within our approach we acknowledge this “custom” by allowing control structures to
be included in the main success scenario.

A use case is completed by specifying the use case extensions. These extensions
constitute alternative scenarios which may or may not lead to the fulfillment of the
use case goal. They represent exceptional and alternative behavior (relative to the
main success scenario) and are indispensable to capturing full system behavior. Each
extension starts with a condition (relative to one or more steps of the main success
scenario), which makes the extension relevant and causes the main scenario to
“branch” to the alternative scenario. The condition is followed by a sequence of
action steps, which may lead to the fulfillment or the abandonment of the use case
goal and/or further extensions. From a requirements point of view, exhaustive
modeling of use case extensions is an effective requirements elicitation device.

Use Case: Login

Goal: Customer logs into the program
Level: Sub-function
Primary Actor: Customer

Main scenario

1. Customer indicates that he/she wishes to log-in to the system. (step:interaction)
2. Customer performs the choice of the following: (stepChoice)

2.1a Customer provides the user name. (step:interaction)
2.1b Customer provides the password. (step:interaction)

OR
2.2a Customer provides the password. (step:interaction)
2.2b Customer provides the user name. (step:interaction

3. Customer confirms the provided data (step:interaction)
4. System authenticates customer. (step:internal))
5. System informs the customer that the Login was successful. (step:interaction)
6. System grants access to customer based on his/her access levels. (step:internal)
7. The use case ends. (stepEnd)

Extensions

4a. The provided username or/and password is/are invalid:

4a1. The system informs the customer that the provided username and/or
password is/are invalid. (step:interaction)

4a2. The system denies access to the customer. (step:internal)
4a2. The use case ends unsuccessfully. (stepEnd)

Fig. 2. Textual Presentation of the “Login” Use Case

As mentioned before use cases are typically presented as narrative, informal
constructs. A formal mapping from their informal presentation syntax to a semantic
model is not possible. Hence, as a prerequisite, for the definition of formal semantics
and consistency, we require use cases to have a formal structure, which is independent
of any presentation. We have developed a XML Schema (depicted in Figure 3) which
acts as a meta model for use cases. As such, it identifies the most important use case
elements, defines associated mark-up and specifies existing containment relationships
among elements. We use XSLT stylesheets [5] to automatically generate a “readable”
use case representation (Figure 2) from the corresponding XML model.

Fig. 3. Use Case Meta Model

Most relevant for this paper is the definition of the stepGroup element as it
captures the behavioral information of the use case. As depicted, the stepGroup
element consists of a sequence of one of the following sub elements:
• The step element denotes a use case step capturing the primary actor’s interactions

or system activities. It contains a textual description and may recursively nest
another stepGroup element. As implied by the annotations in Figure 2, we
distinguish between interaction steps and internal steps. The former are performed
or are observable by the primary actor and require a user interface, whereas the
latter are unobservable by the primary actor.

• The stepEnd element denotes an empty use case step which has neither a successor
nor an extension.

• The stepChoice element denotes the alternative composition of two stepGroup
elements.

• The stepGoto element denotes an arbitrary branching to another step.

We note that the stepGroup element is part of the mainSuccessScenario as well as

the extension element. The latter additionally contains a condition and a reference to
one or many steps stating why and when the extension may occur.

2.2 Task Models

User task modeling is by now a well understood technique supporting user-centered
UI design [6]. In most UI development approaches, the task set is the primary input to
the UI design stage. Task models describe the tasks that users perform using the
application, as well as how the tasks are related to each other. Like use cases, task
models describe the user’s interaction with the system. The primary purpose of task
models is to systematically capture the way users achieve a goal when interacting

with the system [7]. Different presentations of task models exist, ranging from
narrative task descriptions, work flow diagrams, to formal hierarchical task
descriptions.

Fig. 4. “Login” Task Model

Figure 4 shows a ConcurTaskTreesEnvironment (CTTE) [8] visualization of the
“Login” task model. CTTE is a tool for graphical modeling and analyzing of
ConcurTaskTrees (CTT) models [9]. The figure illustrates the hierarchical break
down and the temporal relationships between tasks involved in the “Login”
functionality (depicted in the use case of Section 2.1). More precisely, the task model
specifies how the user makes use of the system to achieve his/her goal but also
indicates how the system supports the user tasks. An indication of task types is given
by the used symbol to represent tasks. Task models distinguish between externally
visible system tasks and interaction tasks. Internal system tasks (as they are captured
in use cases) are omitted in task models.

Formally a task model is organized as a directed graph. Tasks are hierarchically
decomposed into sub-tasks until an atomic level has been reached. Atomic tasks are
also called actions, since they are the tasks that are actually carried out by the user or
the system. The execution order of tasks is determined by temporal operators that are
defined between peer tasks. In CTT various temporal operators exist; examples
include: enabling (>>), choice ([]), iteration (*), and disabling ([>]. A complete list of
the CTT operators together with a definition of their interpretation can be found in
[9].

2.3 Use Cases vs. Task Models

In the previous two sections, the main characteristics of use cases and task models
were discussed. In this section, we compare both specifications and outline
noteworthy differences and commonalities. In Section 3 the results of this comparison
will be used as guides for the definition of a proper consistency relation that fits the
particularities of both specifications.

Both use cases and task models belong to the family of scenario-based notations,
and as such capture sets of usage scenarios of the system. In theory, both notations
can be used to describe the same information. In practice however, use cases are
mainly employed to document functional requirements whereas task models are used
to describe UI requirements/design details. Based on this assumption we identify
three main differences which are pertinent to their purpose of application:
1. Use cases capture requirements at a higher level of abstraction whereas task

models are more detailed. Hence, the atomic actions of the task model are often
lower level UI details that are irrelevant (actually contraindicated [2]) in the
context of a use case. We note that due to its simplicity, within our example, this
difference in the level of abstraction is not explicitly visible.

2. Task models concentrate on aspects that are relevant for UI design and as such,
their usage scenarios are strictly depicted as input-output relations between the user
and the system. Internal system interactions (i.e. involvement of secondary actors
or internal computations) as specified in use cases are not captured.

3. If given the choice, a task model may only implement a subset of the scenarios
specified in the use case. Task models are geared to a particular user interface and
as such must obey to its limitations. E.g. a voice user interface will most likely
support less functionality than a fully-fledged graphical user interface. In the next
section we will address the question of which use case scenarios the task model
may specify and which scenarios the task model must specify.

3 Formal Definition of Consistency

In this section we first review related work and mathematical preliminaries. Next we
define the mapping from use cases and task models to the proposed semantic domain
of finite state machines. Finally we provide a formal notion of consistency between
use cases and task models.

3.1 Related Work

Consistency verification between two specifications has been investigated for decades
and definitions have been proposed for various models [10-14]. But to our knowledge
a formal notion of consistency has never been defined for use cases and task model
specification.

Brinksma points out that the central question to be addressed is “what is the class
of valid implementations for a given specification?” [15] To this effect various pre-
orders for labeled transition systems have been defined. Among others the most
popular ones are trace inclusion [16], reduction [15], and extension [12, 15, 17]. The
former merely requires that every trace of the implementation is also a valid trace
according to the specification. The reduction preorder defines an implementation as a
proper reduction of a specification if it results from the latter by resolving choices that
were left open in the specification [15]. In this case, the implementation may have
less traces. In the case of the extension preorder two specifications are compared for
consistency by taking into account that one specification may contain behavioral

information which is not present in the other specification. In the subsequent section
we adopt (with a few modifications) the extension preorder as the consistency relation
between uses cases and task models. A prerequisite for a formal comparison (in terms
of consistency) of use cases and task models is a common semantics.

In [18] Sinnig et al. propose a common formal semantics for use cases and task
models based on sets of partial order sets. Structural operational semantics for CTT
task models are defined in [19]. In particular Paternò defines a set of inference rules
to map CTT terms into labeled transition systems. In [20] Xu et al. suggest process
algebraic semantics for use case models, with the overall goal of formalizing use case
refactoring.

In [21, 22, 23] use case graphs have been proposed to formally represent the
control flow within use cases. For example Koesters et al. define a use case graph as a
single rooted directed graph, where the nodes represent use case steps and the edges
represent the step ordering. Leaf nodes indicate the termination of the use case [21].

In our approach we define common semantics for use cases and task model based
on finite state machines. In the next section we lay the path for the subsequent
sections by providing the reader with the necessary mathematical preliminaries.

3.2 Mathematical Preliminaries

We start by reiterating the definition of (non-deterministic) finite state machines
(FSM) which is followed by the definitions of auxiliary functions needed by our
consistency definition.

Definition 1: A (nondeterministic) finite state machine is defined as the following
tuple: M = (Q, Σ, δ, q0, F), where

• Q is a finite set of states.
• Σ is a finite set of symbols (the input alphabet), where each symbol represents

an event.
• q0 is the initial state with q0 ∈ Q
• F is the set of final (accepting) states with F ⊆ Q
• δ: Q x (Σ ∪ {λ}) → 2Q is the transition function1, which returns for a given state

and a given input symbol the set of (possible) states that can be reached.

In what follows we define a set of auxiliary functions which will be used later on for
the definition of consistency between two FSMs.

Definition 2: The extended transition function δ*: Q x Σ* → 2Q is defined in a
standard way as:

δ*(qi, w) = Qj

1 λ represents the empty string. Σ0 = {λ}

where Qj is the set of possible states the Non-deterministic FSM may be in, having
started in state qi and after the sequence of inputs w. A formal recursive definition of
the extended transition function can be found in [24].

Definition 3: The function accept: Q → 2Σ denotes the set of possible symbols which
may be accepted in a given state.

accept (q) = {a | δ*(q, a)}

Note that ‘a’ ambiguously denotes either a symbol or the corresponding string of one
element.

Definition 4: The function failure: Q → 2Σ denotes the set of possible symbols which
may not be accepted (refused) in a given state. failure(p) is defined as the complement
of accept (p).

failure(p) = Σ \ accept (p)

Definition 5: The language L accepted by a FSM M = (Q, Σ, δ, q0, F) is the set of all
strings of event symbols for which the extended transition function yields at least one
final state (after having started in the initial state q0). Each element of L represents
one possible scenario of the FSM.

L (M) = {w | δ*(q0, w) ∩ F ≠ ∅}

Definition 6: The set of all traces generated by the NFSM M = (Q, Σ, δ, q0, F) is the
set of all strings or sequences of events accepted by the extended transition function
in the initial state.

Traces (M) = {w | δ*(q0, w)}

3.3 Mapping Use Cases to Finite State Machines

In this section we define a mapping from use cases to the domain of finite state
machines. It is assumed that the use case specification complies with the structure
outlined in Section 2.1.

The building blocks of a use case are the various use case steps. According to the
control information entailed in the use case, the various steps are gradually composed
into more complex steps until the composition eventually results in the entire use
case. We distinguish between sequential composition and choice composition. The
former is denoted by the relative ordering of steps within the use case specification or
the stepGoto construct, whereas the latter is denoted by the stepChoice element.

A use case step may have several outcomes (depending on the number of
associated extensions). This has an implication on the composition of use case steps.
In particular the sequential composition of two use case steps is to be defined relative
to a given outcome of the preceding step. For example the steps of the main success

scenario are sequentially composed relative to their successful (and most common)
outcome. In contrast to this, the steps entailed in use case extensions are sequentially
composed relative to an alternative outcome of the corresponding “extended” steps.

Following this paradigm, we propose representing each use case step as a finite
state machine. Figure 5 depicts a blueprint of such a state machine representing an
atomic use case step. The FSM only consists of an initial state and multiple final
states. The transitions from the initial state to the final states are triggered by events.
Each event represents a different outcome of the step. In what follows we illustrate
how the sequential composition and choice composition of use case steps are
semantically mapped into the sequential composition and deterministic choice
composition of FSMs.

Fig. 5. FSM Blueprint for Atomic Use Case Steps

Figure 6 schematically depicts the sequential composition of two FSMs M1 and M2
relative to state qn. The resulting FSM is composed by adding a transition from qn
(which is a final state in M1) and the initial state (s0) of M2. As a result of the
composition, both qn and s0 lose their status as final or initial states, respectively. The
choice composition of use case steps is semantically mapped into the deterministic
choice composition of the corresponding FSMs. As depicted on the left hand side of
Table 1 (in Section 3.4) the main idea is to merge the initial states of the involved
FSMs into one common initial state of the resulting FSM.

Fig. 6. Sequential Composition of Two FSMs

Figure 7 depicts the FSM representing the “Login” use case from Section 2.1. It
can be easily seen how the FSM has been constructed from various FSMs
representing the use case steps. Identical to the textual use case specification, the FSM

specifies the entry of the login coordinates (denoted by the events e21 and e22) in any
order. Due to the associated extension, step 4 is specified as having different
outcomes. One outcome (denoted by event e4) will lead to a successful end of the use
case whereas the other outcome (denoted by event e4a) will lead to login failure.

Fig. 7. FSM Representation of the “Login” Use Case

3.4 Mapping CTT Task Models to Finite State Machines

After we have demonstrated how use cases are mapped to FSM specifications, we
now demonstrate the mapping from CTT task models to the same semantic domain.
The building blocks of task models are the action tasks (i.e. tasks that are not further
decomposed into subtasks). In CTT, action tasks are composed to complex tasks
using a variety of temporal operators. In what follows we will demonstrate how
actions tasks are mapped into FSMs and how CTT temporal operators are mapped
into compositions of FSMs.

In contrast to use case steps, tasks do not have an alternative outcome and the
execution of a task has only one result. Figure 8 depicts the FSM denoting an action
task. It consists of only one initial and one final state. The transition between the two
states is triggered by an event denoting the completion of task execution.

Fig. 8. FSM Representing an Action Task

In what follows we demonstrate how CTT temporal operators (using the example
of enabling (>>) and choice ([])) are semantically mapped into compositions of
FSMs. The sequential execution of two tasks (denoted by the enabling operator) is
semantically mapped into the sequential composition of the corresponding state
machines. As each FSM representing a task has only one final state, the sequential
composition of two FSMs M1 and M2 is performed by simply defining a new lambda
transition from the final state of M1 to the initial state of M2.

The mapping of the CTT choice operator is less trivial. At this point it is important
to recall our assumption (see Section 2.3) that task models specify system behavior as
an input-output relation, where internal system events are omitted. Moreover the
execution of a task can result only in one state. The specification of alternative
outcomes is not possible. Both observations have implications on the semantic
mapping of the choice operator. Depending on the task types of the operands we
propose distinguishing between deterministic choices and non-deterministic choices.
If the enabled tasks of both operands are application tasks (e.g. “Display Success
Message”, “Display Failure Message”, etc.) then (a) the non-deterministic choice is
used to compose the corresponding FSMs, otherwise (b) the deterministic choice
composition is employed.

The former (a) is justified by the fact that each application works in a deterministic
manner. Hence, the reason why the system performs either one task or the other is
because the internal states of the system are not the same. Depending on its internal
state, the system either performs the task specified by the first operand or the task
specified by the second operand. However, task models do not capture internal system
operations. As a result, from the task model specification, we do not know why the
system is in one state or the other and the choice between the states becomes non-
deterministic.

As for the latter case (b), the choice (e.g. between two interaction tasks) is
interpreted as follows. In a given state of the system, the user has the exclusive choice
between carrying one or the other task. Clearly the system may only be in one
possible state when the choice is made. Hence, the deterministic choice composition
is applicable.

Table 1 schematically depicts the difference between deterministic choice
composition and non-deterministic choice composition of two FSMs. In contrast to
deterministic choice composition (discussed in the previous section) non-
deterministic choice composition does not merge the initial states of the involved
FSMs, but introduces a new initial state.

Table 1: Choice Compositions of FSMs

Deterministic Choice Composition Non-deterministic Choice Composition

Figure 9 portrays the corresponding FSM for the “Login” task model. We note that

the non-deterministic choice composition has been employed to denote the CTT
choice between the system tasks “Display Success Message” and “Display Failure
Message”. After the execution of the “Submit” task the system non-deterministically
results in two different states. Depending on the state either the Failure or the Success
Message is displayed.

Fig. 9. FSM Representation of the “Login” Task Model

For the sake of completeness we now briefly sketch out how the remaining CTT
operators (besides enabling and choice) can be mapped into FSM compositions: In
CTT it is possible to declare tasks as iterative or optional. Iterative behavior can be
implemented by adding a transition from the final state to the initial state of the FSM
representing the task, whereas optional behavior may be implemented by adding a
lambda transition from the initial state to the final state. The remaining CTT operators
are more or less a short hand notation for more complex operations. As such they can
be rewritten using the standard operators. For example the order independency (t1 |-|
t2) operator can be rewritten as the choice of either executing t1 followed by t2 or
executing t2 followed by t1. Another example is the concurrency (t1 ||| t2) operator,
which can be rewritten as the choice between all possible interleavings of action tasks
entailed in t1 and t2. Similar rewritings can be established for the operators disabling
and suspend/resume. Further details can be found in [18].

3.5 A Formal Definition of Consistency

In Section 2.3 we made the assumption and viewed task models as UI specific
implementations of a use case specification. In this section we will tackle the question
of what is the class of valid task model implementations for a given use case
specification. To this effect we propose the following two consistency principles:
1. Every scenario in the task model is also a valid scenario in the use case

specification. That is, what the implementation (task model) does is allowed by the
specification (use case).

2. Task models do not capture internal operations, which are however specified in the
corresponding use case specification. In order to compensate for this allowed
degree of under-specification we require the task model to cater for all possibilities
that happen non-deterministically from the user’s perspective.

For example as specified by the “Login” use case the system notifies the primary

actor of the success or failure of his login request based on the outcome of the
internal validation step. According to the second consistency principle we require
every task model that implements the “Login” use case specification to specify the
choice between a task representing the success notification and a task representing the
failure notification.

We note that the first consistency principle can be seen as a safety requirement, as
it enforces that nothing bad can happen (the task model must not specify an invalid
scenario with respect to the use case specification). The second consistency principle
can be seen as a liveness requirement as it ensures that the task model specification
does not “deadlock” due to an unforeseen system response.

In order to formalize the two consistency principles we adopt Brinksma’s
extension relation [15], which tackles a related conformance problem for labeled
transition systems. Informally, a use case specification and a task model specification
are consistent, if and only if the later is an extension of the former. Our definition of
consistency between task models and use cases is as follows:

Definition 7: Consistency. Let M1 = (Q1, Σ, δ1, q01, F1) be the FSM representing the
use case U and M2 = (Q2, Σ, δ2, q02, F2) be the FSM representing the task model T.
Then T is consistent to the use case U iff the following two properties hold.

(1) Language inclusion (safety property)
L(M2) ⊆ L(M1)

(2) Sufficient coverage: (liveness property)
∀t ∈ T with T = {Traces(M2) \ L(M2)}

a. Let QM1={p1, p2, …, pn} be δ*(q01,t). That is, the pi’s are all and
only the states that can be reached from the initial state of M1 after
having accepted t.

b. Let QM2={q1, q2, …, qm} be δ*(q02,t). That is, the qj’s are all and
only the states that can be reached from the initial state of M2 after
having accepted t.

c. We require that: ∀p ∈QM1 ∃q ∈QM2. failure (p) ⊆ failure (q).

The liveness property states that the task model FSM must refuse to accept an
event in a situation where the use case FSM may also refuse. If we translate this
condition back to the domain of use cases and task models, we demand the task model
to provide a task for every situation where the use case must execute a corresponding
step. The main difference to Brinksma’s original definition is that our definition is
defined over finite state machines instead of labeled transition systems. As a
consequence, we require that the language accepted by the task model FSM is
included in the language accepted by the use case FSM (safety property). Task
models that only implement partial scenarios of the use case specification are deemed
inconsistent.

One precondition for the application of the definition is that both state machines
operate over the same alphabet. The mappings described in the previous sections do
not guarantee this property. Hence, in order to make the FSMs comparable, a set of
preliminary steps have to be performed and are described in the following:

1. Abstraction from internal events: Task models do not implement internal system
events. Hence, we require the alphabet of the use case FSM to be free of symbols
denoting internal events. This can be achieved by substituting every symbol
denoting an internal event by lambda (λ)2.

2. Adaptation of abstraction level: Task model specifications are (typically) at a
lower level of abstraction than their use case counter parts. As such a use case step
may be refined by several tasks in the task model. Events representing the
execution of these refining tasks will hence not be present in the use case FSM. We
therefore require that for every event ‘e’ of the task model FSM there exists a
bijection that relates ‘e’ to one corresponding event in the use case FSM. This can
be achieved by replacing intermediate lower level events in the task model FSM
with lambda events. Events denoting the completion of a refining task group are
kept.

3. Symbol mapping: Finally, the alphabets of the two FSMs are unified by renaming
the events of the task model FSM to their corresponding counterparts in the use
case FSM.

In what follows we will apply our consistency definition to verify that the “Login”

task model is a valid implementation of the “Login” use case. Table 2 depicts the
FSMs for the “Login” use case (MU) and the “Login” task model (MT), after the
unification of their input alphabets. We start with the verification of the safety
property (language inclusion). With

L(MU)={<e1,e21,e22,e3,e5>,<e1,e22,e21,e3,e5>,<e1,e21,e22,e3,e4a1>,<e1,e22,e21,e3,e4a1>}
L(MT)={<e1, e21, e22, e3, e5>,<e1, e21, e22, e3, e4a1>}
we can easily see the L(MT) ⊆ L(MU). Hence the first property is fulfilled.

Table 2: Use Case FSM and Task Model FSM After the Unification of Their Alphabets

Unified Use Case FSM (MU) Unified Task Model FSM (MT)

We continue with the verification of the second property (liveness). The set T of all

partial runs of MT is as follows:
T = {<e1>,<e1,e21>,<e1,e21,e22>, <e1,e21,e22,e3>}

We verify for each trace t in T that the liveness property holds. Starting with t= <e1>
we obtain QMU={q2}; QMT={u2} as the set of reachable states in MU and MT after
having accepted t. Next we verify that for every state in QMU there exists a state in
QMT with an encompassing failure set. Since QMU and QMT only contain one element
we require that failure (q2) ⊆ failure (u2). With failure(q2) = {e1, e3, e5, a4a1} and
failure(u2) = {e1, e22, e3, e5, a4a1} this property is clearly fulfilled. In a similar fashion

2 Lambda denotes the empty string and as such is not part of the language accepted by an FSM.

we prove that the liveness property holds for the traces: <e1,e21>,<e1,e21,e22>. More
interesting is the case where t = <e1,e21,e22,e3>. We obtain QMU={q6, q7, q10};
QMT={u5, u6, u8} as the set of reachable states in MU and MT after having accepted t.
Next we have to find for each state in QMU a state in QMT with an “encompassing”
failure set. For q6 (failure(q6)={e1, e21, e22, e3}) we identify u5 (failure(u5)={e1, e21, e22,
e3}). For q7 (failure(q7)={e1, e21, e22, e3, e4a1}) we identify u6 (failure(u6)={e1, e21, e22,
e3, e4a1}) and for q10 (failure (q10)= {e1, e21, e22, e3, e5}) we identify u8 (failure (u8) =
{e1, e21, e22, e3, e5}). For each identified pair of pi and qi it can be easily seen that
failure (pj) ⊆ failure (qi), hence we conclude that the “Login” task model represented
by MT is consistent to the “Login” use case represented by MU q.e.d.

Fig. 10. FSM Representation of an Inconsistent “Login” Task Model

We conclude this chapter with a counter example, by presenting a “Login” task

model which is not a valid implementation of the “Login” use case. The FSM (MT2)
portrayed by Figure 10 represents a task model which does not contain the choice
between “Display Failure Message” and “Display Success Message”. Instead, after
the “Submit” task (e3), “Success Message” (e5) is always displayed. It can be easily
seen that the safety property holds with L(MT2) ⊆ L(MU). The verification of the
liveness property however will lead to a contradiction. For this purpose, let us
consider the following trace of MT2: t = <e1,e21,e22,e3>. We obtain QMU={q6, q7, q10}
and QMT2={u5} as the set of all reachable states in MU and MT after having accepted t.
In this case however, for q10 we cannot find a corresponding state in QMT2 (which in
this case consists of a single element only) such that the failure set inclusion holds.
We obtain failure(q10)={e1, e21, e22, e3, e5} and failure(u5)={e1, e21, e22, e3, e4a1}.
Clearly failure(q10) is not a subset of failure(u5). Hence the task model is not
consistent to the “Login” use case.

4 Conclusion

In this paper we proposed a formal definition of consistency between use cases and
task models based on a common formal semantics. The main motivation for our
research is the need for an integrated development methodology where task models
are developed as logical progressions from use case specifications. This methodology
rests upon a common semantic framework where we can formally validate whether a
task model is consistent with a given use case specification. With respect to the
definition of the semantic framework, we reviewed and contrasted key characteristics
of use cases and task models. As a result we established that task model specifications
are at a lower level of abstraction than their use case counterparts. We also noted that
task models omit the specification of internal system behavior, which is present in use
cases.

These observations have been used as guides for both the mapping to finite state
machines and for the formal definition of consistency. The mapping is defined in a
compositional manner over the structure of use cases and task models. As for the
definition of consistency, we used an adaptation of Brinksma’s extension pre-order.
We found the extension relation appropriate because it acknowledges the fact that
under certain conditions two specifications remain consistent, even if one entails
additional behavioral information which is omitted in the second. Both the mapping
and the application of the proposed definition of consistency have been supported by
an illustrative example.

As future work, we will be tackling the question of how relationships defined
among use cases (i.e. extends and includes) can be semantically mapped into finite
state machines. This will allow us to apply the definition of consistency in a broader
context, which is not restricted to a single use case. Another issue deals with the
definition of consistency among two use case specifications and in this vein also
among two task model specifications. For example, if a user-goal level use case is
further refined by a set of sub-function use cases it is important to verify that the sub-
function use cases do not contradict the specification of the user goal use case. Finally
we note that for the simple “Login” example consistency can be verified manually.
However, as the specifications become more complex, efficient consistency
verification requires supporting tools. We are currently investigating how our
approach can be translated into the specification languages of existing model checkers
and theorem provers.

Acknowledgements

This work was funded in part by the National Sciences and Engineering Research
Council of Canada. We are grateful to Homa Javahery who meticulously reviewed
and revised our work.

References

1. Seffah, A., M. C. Desmarais and M. Metzger, Software and Usability Engineering:
Prevalent Myths, Obstacles and Integration Avenues, chapter in Human-Centered Software
Engineering -Integrating Usability in the Software Development Lifecycle, Springer.

2. Cockburn, A., Writing effective use cases, Addison-Wesley, Boston, 2001.
3. Pressman, R. S., Software engineering: a practitioner's approach, McGraw-Hill, Boston,

Mass., 2005.
4. Larman, C., Applying UML and patterns : an introduction to object-oriented analysis and

design and the unified process, Prentice Hall PTR, Upper Saddle River, NJ, 2002.
5. XSLT, XSL Transformations Version 2.0 [Internet], Available from

http://www.w3.org/TR/xslt20/ , Accessed: Dec. 2006, Last Update: Nov. 2006.
6. Paternò, F., Towards a UML for Interactive Systems, in Proceedings of EHCI 2001,

Toronto, Canada, pp. 7-18, 2001.

7. Souchon, N., Q. Limbourg and J. Vanderdonckt, Task Modelling in Multiple contexts of
Use, in Proceedings of Design, Specification and Verification of Interactive Systems,
Rostock, Germany, pp. 59-73, 2002.

8. Mori, G., F. Paternò and C. Santoro, CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design, in IEEE Transactions on Software Engineering,
August 2002, pp. 797-813, 2002.

9. Paternò, F., Model-Based Design and Evaluation of Interactive Applications, Springer,
2000.

10. Bowman, H., Steen, M. W. A., Boiten, E. A., Derrick, J., A Formal Framework for
Viewpoint Consistency, Formal Methods in System Design, p.111-166, September 2002.

11. Ichikawa, H., Yamanaka, K., and J. Kato, “Incremental specification in LOTOS,” in Proc. of
Protocol Specification, Testing and Verification X, Ottawa, Canada, 1990, pp. 183–196.

12. De Nicola, R., Extensional Equivalences for Transition Systems, Acta Informatica, Vol. 24,
pp. 211-237, 1987.

13. Butler, M. J., A CSP Approach to Action Systems, PhD Thesis in Computing Laboratory,
Oxford University, 1992.

14. Khendek, F., Bourduas, S., Vincent, D., Stepwise Design with Message Sequence Charts,
Proceedings of the 21st IFIP WG 6.1 International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE), Cheju Island, Korea, August 28-31 2001.

15. Brinksma, E., Scollo, G., Steenbergen, C., LOTOS specifications, their implementations,
and their tests, in Proceedings of IFIP Workshop Protocol Specification, Testing, and
Verification VI, pp. 349-360, 1987.

16. Bergstra, J. A. 2001 Handbook of Process Algebra. Elsevier Science Inc.
17. Brookes, S. D., Hoare, C. A. R., Roscoe, A. D., A Theory of Communicating Sequential

Processes, Journal of ACM, Vol. 31, No. 3, pp. 560-599, 1984.
18. Sinnig, D., Chalin, P., Khendek, F., Towards a Common Semantic Foundation for Use

Cases and Task Models, to Appear in Electronic Notes in Theoretical Computer Science
(ENTCS), Dec. 2006.

19. Paternò F., Santoro C., The ConcurTaskTrees Notation for Task Modelling, Technical
Report at CNUCE-C.N.R., May, 2001.

20. Xu, J., W. Yu, K. Rui and G. Butler, Use Case Refactoring: A Tool and a Case Study, in
Proceedings of APSEC 2004, Busan, Korea, pp. 484-491, 2004.

21. Kosters, G. Pagel, B., Winter, M., Coupling Use Cases and Class Models, in Proceedings of
the BCS-FACS/EROS workshop on "Making Object Oriented Methods More Rigorous",
Imperial College, London, June 24th, 1997, pp. 27-30.

22. Mizouni, R., A. Salah, R. Dssouli and B. Parreaux, Integrating Scenarios with Explicit
Loops, in Proceedings of NOTERE, 2004, Essaidia Morocco, 2004.

23. Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J.-M., Automatic test generation: a use case
driven approach, IEEE Transactions on Software Engineering, Volume 32, Issue 3, March
2006, pp. 140 - 155.

24. Hopcroft, J. E., Motwani, R., Ullman, J. D., Introduction to Automata Theory, Languages,
and Computation (3rd Edition), Addison Wesley, 2006.

